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Asymmetric simple exclusion processes are important for understanding low-
dimensional multi-particle dynamic phenomena. The effect of irreversible
detachments of particles on dynamics of asymmetric simple exclusion processes
is studied using analytical and computer simulation techniques. In the simplest
model, where particles can only detach from a single site in the bulk of the
system, a theory is presented and used to calculate explicitly phase diagrams and
particle density profiles. The complexity of the phase behavior is discussed in
terms of a recent domain-wall theory for driven lattice systems. The theoretical
results qualitatively and quantitatively agree with computer Monte Carlo simu-
lations.
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1. INTRODUCTION

Asymmetric simple exclusion processes (ASEPs) have attracted a lot of
attention in recent years. (1–4) They are important in studies of one-dimen-
sional multi-particle dynamic phenomena such as kinetics of biopolymeri-
zation, (5) reptation dynamics of entangled polymers, (6) diffusion through
biological membrane channels, (7) and traffic problems. (8) ASEPs are lattice
gas models where particles diffuse mainly in one direction and interact with
hard-core exclusion. Some simple versions of these models have been
solved exactly. (2–4)



The characteristic feature of ASEPs is the occurrence of boundary-
induced phase transitions between nonequilibrium stationary states that do
not have analogs in equilibrium systems. (3, 4, 9) The microscopic nature of
these phase transitions can be explained using a phenomenological domain-
wall theory. (9) According to this theory, for the ASEP with open bound-
aries, the entrance, the exit and the bulk of the system enforce their own
domains, i.e., homogeneous parts of the system with a uniform density and
current. At any given time two domains coexist in the system, which
implies the existence of a domain wall, or a shock, in the boundary region
between these two domains. This domain wall is moving as a random
walker with rates determined by currents and densities of domains, and in
the limit of large times one of the domains is winning over the other. Thus,
in a stationary state the domain wall will be found fluctuating near one
of the boundaries. Note, however, that the domain wall picture fails in
maximal-current phase, i.e., when the properties of the system are deter-
mined by bulk dynamics alone. (9) This theory has been applied successfully
to explain the behavior of asymmetric exclusion processes with both
complex dynamics and symmetry. (10–12)

Most theoretical investigations of asymmetric simple exclusion pro-
cesses concentrate on translationally invariant systems where particles can
always be found on the lattice. (3, 4) However, some experimental observa-
tions, such as frequent irreversible detachments of particles during biologi-
cal transport phenomena, (13) demand an extension of basic asymmetric
simple exclusion processes. The effect of dissociation from linear tracks,
which is important for the motion of motor proteins, (13, 14) has been inves-
tigated recently in detail for the transport of single particles. (15) However,
the effect of irreversible detachments on dynamics of multi-particle systems
does not appear to have been studied yet in a systematic way.

In this paper, we study the effect of detachments in ASEPs and inves-
tigate, specifically, the simplest situation where irreversible dissociations
may play a role in the dynamics of asymmetric simple exclusion processes.
We consider a one-dimensional lattice model with N sites where particles
enter the system with rate a, 0 [ a [ 1, (if there is no particle at the first
site) and leave the system with rate b, 0 [ b [ 1, (if there is a particle at the
last site) as shown in Fig. 1. In this model each lattice site i, 1 [ i [ N, is
either occupied by a particle, or empty, and the only allowed motion is that
of particles hopping from site i one step forward to site i+1 with unit
rate if site i+1 is empty. In addition, particles can dissociate irreversibly
with rate q from a bulk site k far away from boundaries (see Fig. 1),
i.e., 1 ° k ° N. Without detachments, our model is reduced to a totally
asymmetric simple exclusion model for which the exact solution is
known. (3, 4) For this reason, the totally asymmetric simple exclusion model
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Fig. 1. The totally asymmetric exclusion model with irreversible detachments from a specific
site in the middle of the lattice. The model can be mapped into two coupled totally asymmet-
ric exclusion models without detachments (see text for details).

will be used in our analysis as a reference model, and the effect of detach-
ments will be evaluated by comparison with the properties of this model.

A possible method of solution of ASEPs is based on the matrix-
product ansatz, (2–4) which requires translational symmetry in the bulk of the
system. However, in the present model the possibility of detachment from
the single site in the bulk breaks this symmetry and thus only approximate
solutions are possible. To investigate the effect of detachments on dynamics
of asymmetric exclusion processes, we will present an approximate theory
similar to one which has been used successfully for ASEPs with local
inhomogeneity. (16) The results will be verified with Monte Carlo computer
simulations.

Note that this system, as well as many other ASEPs, has a special
particle-hole symmetry, where holes can be viewed as new ‘‘particles,’’
while particles become new ‘‘holes.’’ Then this model can be viewed as an
asymmetric simple exclusion process, although with particles moving now
from right to left, and with irreversible attachments at site k. Our analysis
thus also describes the effect of irreversible associations on dynamics of
ASEPs.

2. APPROXIMATE SOLUTIONS

2.1. General Scheme

To simplify the calculations we assume that the lattice size N is a large
even number and we put the special site k from which dissociations are
possible at the middle of the lattice, i.e., k=N/2. It is reasonable to expect
that the exact position of this special site will not influence qualitatively our
arguments, as long as this site is far away from the boundaries. (16) Before
presenting the solution for the asymmetric exclusion model with irreversible
detachments, we review some results for the totally asymmetric exclusion
model without dissociations, which will be used in the present theory.
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The totally asymmetric simple exclusion model at the thermodynamic
limit N Q . can be found in three stationary phases depending on the
values of the entrance rate a and the exit rate b. When a \ 1/2 and
b \ 1/2, a maximal-current (mc) phase dominates, for which

r1=1 −
1

4a
, rN=

1
4b

,

rbulk=1/2, J=1/4,

(1)

where ri is the particle density at site i, rbulk is the density in the bulk of the
system and J is the stationary particle current. The conditions a > b and
b < 1/2 define a high-density (hd) phase for which

r1=1 −
b(1 − b)

a
, rN=1 − b,

rbulk=1 − b, J=b(1 − b).

(2)

A low-density (ld) phase exists when a < b and a < 1/2. This phase can be
described by

r1=a, rN=
a(1 − a)

b
,

rbulk=a, J=a(1 − a).

(3)

The special site k, from which irreversible detachments are possible,
breaks the original translational invariance of the totally asymmetric
exclusion model. However, it also divides the lattice of size N into two
translationally invariant sublattices of size N/2. Thus, we can think of our
system as two totally asymmetric exclusion models coupled at the site k
(see Fig. 1), and stationary particle currents through sublattices are related
by their special condition. According to this requirement, the current
through the right lattice should be equal to the current through the left
lattice minus the current lost due to irreversible dissociations from site k.
Thus we can use known results for the totally asymmetric exclusion model
for each sublattice in order to determine the properties for the overall
system. A similar approach has been used successfully in the investigation
of the asymmetric simple exclusion model with local inhomogeneity. (16)

Following the idea that the system with detachments can be viewed as
two coupled lattices without detachments, the left sublattice will have the
entrance rate a and the effective exit rate beff, which can be defined as

beff=q+(1 − rk+1). (4)
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This expression reflects the fact that particles can leave the left lattice in
two ways: they can move into the right lattice with rate 1 (if there is no
particle at the site k+1), or they can dissociate irreversibly with rate q.
Similarly, the right sublattice will have the exit rate b and the effective
entrance rate aeff, which is defined as

aeff=rk. (5)

By defining the effective entrance and exit rates through expressions (4)
and (5), it is assumed that particles can occupy the two neighboring sites k
and k+1 independently from each other, i.e., the probability that particles
occupy sites k and k+1 simultaneously is equal to the product of the
probabilities that particles occupy each site independently. Obviously, this
is not the case in real systems.

2.2. Phase Diagram and Density Profiles

Since each sublattice can be viewed independently as a totally asym-
metric simple exclusion model, it may exist in three different stationary
states. There are then 9 possible phases for the overall asymmetric exclu-
sion model with irreversible detachments. However, because particles can
dissociate from site k, the current in the right subsystem cannot reach its
maximal value, and thus three phases which support the maximal current
in the right lattice, i.e., low-density/maximal-current (ld/mc), high-density/
maximal-current (hd/mc) and maximal-current/maximal-current (mc/mc),
do not exist. The conditions for existence of the other 6 phases can be
found using the properties of the totally asymmetric exclusion model and
expressions (4) and (5).

The maximal-current/high-density (mc/hd) phase is determined by the
following general conditions

a > 1/2, beff > 1/2,

aeff > b, b < 1/2.
(6)

In addition, densities at sites k and k+1 are given by

rk=
1

4beff
, rk+1=1 −

b(1 − b)
aeff

. (7)

However, we would like to describe the conditions for the existence of this
phase only in terms of parameters a, b and q. From Eqs. (4), (5) and (7),
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we derive the effective exit rate from the left lattice and the effective
entrance rate to the right lattice, namely,

aeff=
(1 − 2b)2

4q
, beff=

q
(1 − 2b)2 . (8)

Because these rates should satisfy the general conditions (6), we finally
obtain the parameter ranges for a, b and q,

1 − `2q

2
< b <

1+q − `(1+q)2 − 1

2
, a > 1/2, (9)

for the case in which the asymmetric simple exclusion model with irrever-
sible detachments can be found in the mc/hd phase.

Similar calculations can be performed for the maximal-current/low-
density (mc/ld) phase, which exists when

a > 1/2, beff > 1/2,

aeff < b, aeff < 1/2.
(10)

Particle densities at special sites k and k+1 are given by

rk=
1

4beff
, rk+1=aeff. (11)

Combining Eq. (11) with Eqs. (4) and (5) leads to the following expressions
for the effective rates

aeff=
1+q − `(1+q)2 − 1

2
, beff=

1+q+`(1+q)2 − 1

2
. (12)

Substituting these results into Eq. (10) yields the following parameter
ranges for mc/ld phase

b >
1+q − `(1+q)2 − 1

2
, a > 1/2. (13)

The case with the high-density/high-density (hd/hd) phase is more
complicated. It can be generally described by the following conditions

a > beff, beff < 1/2,

aeff > b, b < 1/2,
(14)
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and

rk=1 − beff, rk+1=1 −
b(1 − b)

aeff
. (15)

Substituting this last equation into (4) and (5) yields the effective entrance
and exit rates

aeff=
1 − q+`(1 − q)2 − 4b(1 − b)

2
, beff=

1+q − `(1 − q)2 − 4b(1 − b)

2
.

(16)

Comparing these expressions with the inequalities (14) we obtain for
a > 1/2

b <
1 − `1+4(1 − a)(q − a)

2
, q < a, (17)

while for a < 1/2

b <
1 − `2q

2
. (18)

Equations (17) and (18) determine the conditions for the existence of the
hd/hd phase. From the last equation we can also conclude that this phase
exists only for q < 1/2.

The high-density/low-density (hd/ld) phase is defined by

a > beff, beff < 1/2,

aeff < b, aeff < 1/2.
(19)

Particle densities at sites k and k+1 are given by

rk=1 − beff, rk+1=aeff. (20)

However, in contrast to the case of the previous phases, comparison of
these equations with (4) and (5) shows that conditions (19) cannot be
satisfied for any values of the parameters a, b and q. Thus the hd/ld phase
does not exist at stationary conditions.

For the low-density/high-density (ld/hd) phase, which is defined for

a < beff, a < 1/2,

aeff > b, b < 1/2,
(21)
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and

rk=
a(1 − a)

beff
, rk+1=1 −

b(1 − b)
aeff

, (22)

we can perform similar calculations, and find that this phase exists when

1 − `1+4(1 − a)(q − a)

2
< b <

1+q − `(1+q)2 − 4(1 − a)(1 − a)

2
, a < 1/2.

(23)

Finally, for the low-density/low-density (ld/ld) phase, for which

a < beff, a < 1/2,

aeff < b, aeff < 1/2,
(24)

and

rk=
a(1 − a)

beff
, rk+1=aeff, (25)

the existence conditions are given by

b >
1+q − `(1+q)2 − 4(1 − a)(1 − a)

2
, a < 1/2. (26)

Thus the phase diagram consists of four (for q > 1/2) or five (for q < 1/2)
stationary phases, as shown in Fig. 2. Density profiles in all phases can be
easily constructed from the corresponding density profiles at each sublat-
tice using the exact expressions given in refs. 2 and 3.

3. MONTE CARLO SIMULATIONS AND DISCUSSION

In the limit of q Q 0, the present model with detachments reduces to
the totally asymmetric exclusion model, and it can be easily checked that
the results obtained using our approximate theory agree perfectly with
the known exact solution. (3) To investigate the validity of our theoretical
approach for general values of q, we performed Monte Carlo computer
simulations.

In our computer simulations we considered a lattice with N=200
sites. Since our theory is valid only at the thermodynamic limit N Q .,
there are deviations from theoretical predictions for finite-size lattices;

818 Mirin and Kolomeisky



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β 

MC/LD phaseLD/LD phase

MC/HD phase

LD/HD phase

HD/HD phase

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β 

MC/LD phaseLD/LD phase

MC/HD phaseLD/HD phase

(a) (b)

Fig. 2. Phase diagrams for the asymmetric exclusion model with irreversible detachments:
(a) for q=0.3; (b) for q=0.7. Solid lines correspond to results obtained from approximate
solutions. Thick solid lines indicate the position of first-order phase boundaries, while thin
solid lines denote second-order phase transitions. The circles show the results from Monte
Carlo computer simulations. Filled circles show first-order phase boundaries, and empty
circles display second-order phase boundaries.

however, as we checked for the totally asymmetric simple exclusion model,
N=200 is large enough to neglect these deviations. Similar lattice sizes
have been used successfully in computer analysis of local inhomogeneities
in ASEPs. (16) In addition, in our simulations we assumed that the system
reaches a stationary state when more than 20000 particles pass through the
lattice starting from the initial moment. Each density profile was calculated
by averaging over 109 Monte Carlo steps. Boundaries in phase diagrams
were determined by analyzing the changes in density profiles in corre-
sponding sublattices: see Fig. 4.

For q < 1/2, our approximate theory predicts that there are five pos-
sible stationary phases, while for q > 1/2 the number of available phases
decreases by one. We also predict that there are two types of phase transi-
tions in the system: first-order phase transitions (thick solid lines in Fig. 2)
involve a jump in the particle density in one of the sublattices, while for
second-order phase transitions (thin solid lines in Fig. 2) the density pro-
files change continuously. These results are well supported by extensive
computer simulations as illustrated in Fig. 2. The phase boundaries
obtained from Monte Carlo simulations are in excellent agreement with
theoretically calculated boundaries, although there are small deviations at
first-order phase boundaries.

Similarly, as shown in Fig. 3, there is a very good qualitative and
quantitative agreement between the density profiles calculated from our
approximate approach and those obtained by Monte Carlo simulations.
However, there are differences in the region near the special site k from
which irreversible detachments may occur. This is a consequence of the
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Fig. 3. Density profiles for the system of size N=200 with q=0.3. The squares indicate the
Monte Carlo simulation results. Solid lines show the present theoretical results. Equations
(39), (43) and (44) of ref. 2 have been used in the calculation of approximate density profiles.
Monte Carlo densities are obtained by averaging over 109 Monte Carlo steps. (a) hd/hd phase
with a=0.5, b=0.05; (b) ld/hd phase with a=0.4, b=0.15; (c) mc/hd phase with a=0.7,
b=0.15; (d) mc/ld phase with a=0.7, b=0.5; (e) ld/ld phase with a=0.4, b=0.5.

approximation which neglects the density correlations near the special site k.
In real systems these correlations are significant and determine the behavior
of the system near the boundary between two sublattices. This effect is
clearly seen in the failure of our theory to locate exactly the positions of
phase transitions (see Fig. 4), especially first-order phase boundaries.
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Fig. 4. Density profiles near phase boundaries for the system of size N=200 with q=0.3.
The squares indicate the Monte Carlo simulation results. Solid lines show the present theore-
tical results. Equations (39), (43) and (44) of ref. 2 have been used in the calculation of the
approximate density profiles. Monte Carlo densities are obtained by averaging over 109

Monte Carlo steps. (a) a=0.4, b=0.071; (b) a=0.5, b=0.15; (c) a=0.6, b=0.113; (d)
a=0.31, b=0.196.

Our approximate theory is based on the representation of the system
with irreversible detachments as two coupled totally asymmetric exclusion
models. This suggests that there are 9 possible stationary phases; however,
three phases cannot occur due to the fact that the particle current in the
right sublattice cannot reach its maximal value. In addition, our theoretical
calculations, supported by computer simulations, indicate that the hd/ld
phase also cannot be found at stationary conditions. However, the reason
for this is not understood. To explain the microscopic nature of this phe-
nomenon we invoke the domain-wall theory. (9) At large times, the domain
walls will be found near corresponding boundaries of sublattices, as shown
in Fig. 5. In all existing stationary phases, one or two domain walls are
found near the boundary between sublattices, however in the possible
hd/ld phase the region near site k does not contain the domain walls. This
means that any density fluctuation in this region will destroy the density
gradient between the left and the right sublattices and eventually, at large

Effect of Detachments in ASEPs 821



mc

mc

ld

hd hd

hd

N N

N N

N N

ρ 

ρ 

ρ 

ld

hd

ld
ld

ld hdρ 

ρ 

ρ 

Fig. 5. Schematic density profiles for possible stationary phases in the asymmetric exclusion
model with irreversible detachments. Arrows indicate the approximate positions and direc-
tions of the motion of domain walls.

times, this phase will not occur. In contrast, all other phases will be stable
with respect to any density fluctuation.

4. SUMMARY AND CONCLUSIONS

We investigated the effect of irreversible detachments of particles on
the dynamics of asymmetric simple exclusion processes. We specifically
considered the simple model with only dissociations from a single site in
the bulk of the system. The model was solved analytically using a simple
approximate theory. Our method is based on two assumptions. First, we
mapped our model with irreversible detachments into two coupled totally
asymmetric exclusion processes without detachments. In the second
assumption, we treated the particle occupancies of site k (where detach-
ments take place) and site k+1 in a mean-field fashion, i.e., we neglected
the density correlations near the boundary between two sublattices. Using
these assumptions we showed that irreversible detachments, even from the
single site far away from the boundaries, strongly influence the density
profiles and phase behavior in ASEPs. These results are generally sup-
ported by computer Monte Carlo simulations. Some observed deviations
between theory and computer simulations are attributed to the mean-field
assumption for densities near the special site with detachments. The
microscopic origins of complex phase behavior was analyzed using a phe-
nomenological domain-wall theory. This analysis concludes that existing
stationary phases should contain the domain walls in the boundary region
between sublattices.

Due to particle-hole symmetry, our analytical and computational
analysis is also valid for the description of effects of attachments on the
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dynamics of ASEPs. This leads to an interesting problem of how both
attachments and detachments may influence the dynamics of asymmetric
simple exclusion processes. It is reasonable to suggest that our simple
approximate method, along with computer simulations, is a promising
approach to tackle these complex problems of low-dimensional multi-par-
ticle transport.
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